1,654 research outputs found

    PINK1 homozygous W437X mutation in a patient with apparent dominant transmission of parkinsonism.

    Get PDF
    We analyzed the PINK1 gene in 58 patients with early-onset Parkinsonism and detected the homozygous mutation W437X in 1 patient. The clinical phenotype was characterized by early onset (22 years of age), good re- sponse to levodopa, early fluctuations and dyskinesias, and psychiatric symptoms. The mother, heterozygote for W437X mutation, was affected by Parkinson’s disease and 3 further relatives were reported affected, according to an autosomal dominant transmission

    Natalizumab affects T-cell phenotype in multiple sclerosis: implications for JCV reactivation

    Get PDF
    The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects

    Strong Casimir force reduction through metallic surface nanostructuring

    Full text link
    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.Comment: 11 pages, 8 figure

    Fauna used in popular medicine in Northeast Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal-based remedies constitute an integral part of Brazilian Traditional Medicine. Due to its long history, zootherapy has in fact become an integral part of folk medicine both in rural and urban areas of the country. In this paper we summarize current knowledge on zootherapeutic practices in Northeast of Brazil, based on information compiled from ethnobiological scientific literature.</p> <p>Methods</p> <p>In order to examine the diversity of animals used in traditional medicine in Northeast of Brazil, all available references or reports of folk remedies based on animals sources were examined. 34 sources were analyzed. Only taxa that could be identified to species level were included in assessment of medicinal animal species. Scientific names provided in publications were updated.</p> <p>Results</p> <p>The review revealed that at least 250 animal species (178 vertebrates and 72 invertebrates) are used for medicinal purposes in Northeast of Brazil. The inventoried species comprise 10 taxonomic categories and belong to 141 Families. The groups with the greatest number of species were fishes (n = 58), mammals (n = 47) and reptiles (n = 37). The zootherapeutical products are used for the treatment of different illnesses. The most widely treated condition were asthma, rheumatism and sore throat, conditions, which had a wide variety of animals to treat them with. Many animals were used for the treatment of multiple ailments. Beyond the use for treating human diseases, zootherapeutical resources are also used in ethnoveterinary medicine</p> <p>Conclusion</p> <p>The number of medicinal species catalogued was quite expressive and demonstrate the importance of zootherapy as alternative therapeutic in Northeast of Brazil. Although widely diffused throughout Brazil, zootherapeutic practices remain virtually unstudied. There is an urgent need to examine the ecological, cultural, social, and public health implications associated with fauna usage, including a full inventory of the animal species used for medicinal purposes and the socio-cultural context associated with their consumption.</p

    Inhibition of ovine in vitro fertilization by anti-Prt antibody: hypothetical model for Prt/ZP interaction

    Get PDF
    BACKGROUND: The impact of prion proteins in the rules that dictate biological reproduction is still poorly understood. Likewise, the role of prnt gene, encoding the prion-like protein testis specific (Prt), in ram reproductive physiology remains largely unknown. In this study, we assessed the effect of Prt in ovine fertilization by using an anti-Prt antibody (APPA) in fertilization medium incubated with spermatozoa and oocytes. Moreover, a computational model was constructed to infer how the results obtained could be related to a hypothetical role for Prt in sperm-zona pellucida (ZP) binding. METHODS: Mature ovine oocytes were transferred to fertilization medium alone (control) or supplemented with APPA, or pre-immune serum (CSerum). Oocytes were inseminated with ovine spermatozoa and after 18 h, presumptive zygotes (n = 142) were fixed to evaluate fertilization rates or transferred (n = 374) for embryo culture until D6-7. Predicted ovine Prt tertiary structure was compared with data obtained by circular dichroism spectroscopy (CD) and a protein-protein computational docking model was estimated for a hypothetical Prt/ZP interaction. RESULTS: The fertilizing rate was lower (P = 0.006) in APPA group (46.0+/−6.79%) when compared to control (78.5+/−7.47%) and CSerum (64.5+/−6.65%) groups. In addition, the cleavage rate was higher (P < 0.0001) in control (44.1+/−4.15%) than in APPA group (19.7+/−4.22%). Prt CD spectroscopy showed a 22% alpha-helical structure in 30% (m/v) aqueous trifluoroethanol (TFE) and 17% alpha in 0.6% (m/v) TFE. The predominant alpha-helical secondary structure detected correlates with the predicted three dimensional structure for ovine Prt, which was subsequently used to test Prt/ZP docking. Computational analyses predicted a favorable Prt-binding activity towards ZP domains. CONCLUSIONS: Our data indicates that the presence of APPA reduces the number of fertilized oocytes and of cleaved embryos. Moreover, the CD analysis data reinforces the predicted ovine Prt trend towards an alpha-helical structure. Predicted protein-protein docking suggests a possible interaction between Prt and ZP, thus supporting an important role for Prt in ovine fertilization

    Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection.

    Get PDF
    Chronic infections have been a major topic of investigation in recent years, but the mechanisms that dictate whether or not a pathogen is successfully controlled are incompletely understood. Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent infection in the majority of people in the world. Like other herpesviruses, CMV is well controlled by an effective immune response and induces little, if any, pathology in healthy individuals. However, controlling CMV requires continuous immune surveillance, and thus, CMV is a significant cause of morbidity and death in immune-compromised individuals. T cells in particular play an important role in controlling CMV and both CD4(+) and CD8(+) CMV-specific T cells are essential. These virus-specific T cells persist in exceptionally large numbers during the infection, traffic into peripheral tissues and remain functional, making CMV an attractive vaccine vector for driving CMV-like T cell responses against recombinant antigens of choice. However, the mechanisms by which these T cells persist and differentiate while remaining functional are still poorly understood, and we have no means to promote their development in immune-compromised patients at risk for CMV disease. In this review, I will briefly summarize our current knowledge of CMV-specific CD8(+) T cells and propose a mechanism that may explain their maintenance and preservation of function during chronic infection
    corecore